On the Profile of the Changing Sign Mountain Pass Solutions for an Elliptic Problem
نویسندگان
چکیده
We consider nonlinear elliptic equations with small diffusion and Dirichlet boundary conditions. We construct changing sign solutions with peaks close to the boundary and consider the location of the peak.
منابع مشابه
Existence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کاملOn nonlocal elliptic system of $p$-Kirchhoff-type in $mathbb{R}^N$
Using Nehari manifold methods and Mountain pass theorem, the existence of nontrivial and radially symmetric solutions for a class of $p$-Kirchhoff-type system are established.
متن کاملMultiplicity of Positive Solutions of laplacian systems with sign-changing weight functions
In this paper, we study the multiplicity of positive solutions for the Laplacian systems with sign-changing weight functions. Using the decomposition of the Nehari manifold, we prove that an elliptic system has at least two positive solutions.
متن کاملExistence and multiplicity of nontrivial solutions for $p$-Laplacian system with nonlinearities of concave-convex type and sign-changing weight functions
This paper is concerned with the existence of multiple positive solutions for a quasilinear elliptic system involving concave-convex nonlinearities and sign-changing weight functions. With the help of the Nehari manifold and Palais-Smale condition, we prove that the system has at least two nontrivial positive solutions, when the pair of parameters $(lambda,mu)$ belongs to a c...
متن کاملSystems of Elliptic Equations Involving Multiple Inverse–square Potentials and Critical Exponents
In this paper, a system of elliptic equations is investigated, which involves multiple critical Sobolev exponents and singular points. The best Sobelev constant related to the system is studied, which is verified to be independent of the location of singular points. By a variant of the concentration compactness principle and the mountain-pass argument, the existence of positive solutions to the...
متن کامل